

MB210-212/214

Модуль дискретного ввода

Руководство по эксплуатации

11.2024 версия 2.11 EHE

Содержание

Вв	едение	4
Пр	едупреждающие сообщения	5
Ис	пользуемые аббревиатуры	6
	łазначение	
	ехнические характеристики и условия эксплуатации	
	2.1 Технические характеристики	
	2.2 Изоляция узлов прибора	
	2.3 Условия эксплуатации	
3 N	Леры безопасности	
	Лонтаж	
	Іодключение	
J I	5.1 Рекомендации по подключению	
	5.2 Назначение контактов клеммника	
	5.3 Назначение разъемов	
	5.4 Питание	
	5.1 Подключение к входам	
	5.1.1 Подключение к дискретным входам контактных датчиков	
	5.1.2 Подключение сигналов транзисторов р-п-р и п-р-п типов	
	5.1.3 Подключение энкодеров р-n-р и n-p-n типов	
	5.4 Подключение по интерфейсу Ethernet	
6 V	/стройство и принцип работы	
0)	6.1 Принцип работы	
	6.2 Индикация и управление	
	6.3 Часы реального времени	
	6.4 Запись архива	
	6.5 Режимы обмена данными	
	6.5.1 Работа по протоколу Modbus TCP	
	6.5.2 Коды ошибок для протокола Modbus	
	6.5.3 Работа по протоколу MQTT	
	6.5.4 Работа по протоколу SNMP	
	6.6 Режимы работы дискретных входов	
	6.6.1 Режим определения логического уровня	
	6.6.2 Режим подсчета числа высокочастотных импульсов	
	6.6.3 Режим измерения частоты и периода	
	6.6.4 Режим обработки сигналов с энкодера	
7 H	łастройка	42
	7.1 Подключение к ПО «OWEN Configurator»	
	7.2 Подключение к облачному сервису OwenCloud	
	7.3 Ограничение обмена данными при работе с облачным сервисом OwenCloud	
	7.4 Настройка сетевых параметров	
	7.5 Настройка параметров обмена по протоколу MQTT в ПО «OWEN	
	Configurator»	45
	7.6 Настройка параметров обмена по протоколу SNMP в ПО «OWEN	47
	Configurator»	
	7.7 Пароль доступа к модулю7.8 Обновление встроенного ПО	
	7.8 Обновление встроенного по	
	7.9 Пастроика часов реального времени	
	т. то воостановление заводских настроек	+⊎

7.11 Принудительное обнуление счетчика	49
8 Техническое обслуживание	50
8.1 Общие указания	
8.2 Батарея	
9 Комплектность	54
10 Маркировка	55
11 Упаковка	55
12 Транспортирование и хранение	55
ПРИЛОЖЕНИЕ А. Расчет вектора инициализации для шифрования файла	
архива	56

Введение

Настоящее Руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, конструкцией, работой и техническим обслуживанием модулей дискретного ввода МВ210-212 и МВ210-214 (в дальнейшем по тексту именуемых «прибор» или «модуль»).

Подключение, настройка и техобслуживание прибора должны производиться только квалифицированными специалистами после прочтения настоящего руководства по эксплуатации.

Обозначение прибора при заказе: МВ210-212 и МВ210-214.

Предупреждающие сообщения

В данном руководстве применяются следующие предупреждения:

ОПАСНОСТЬ

Ключевое слово ОПАСНОСТЬ сообщает о **непосредственной угрозе опасной ситуации**, которая приведет к смерти или серьезной травме, если ее не предотвратить.

ВНИМАНИЕ

Ключевое слово ВНИМАНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к небольшим травмам.

ПРЕДУПРЕЖДЕНИЕ

Ключевое слово ПРЕДУПРЕЖДЕНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к повреждению имущества.

ПРИМЕЧАНИЕ

Ключевое слово ПРИМЕЧАНИЕ обращает внимание на полезные советы и рекомендации, а также информацию для эффективной и безаварийной работы оборудования.

Ограничение ответственности

Ни при каких обстоятельствах ООО «Производственное Объединение OBEH» и его контрагенты не будут нести юридическую ответственность и не будут признавать за собой какие-либо обязательства в связи с любым ущербом, возникшим в результате установки или использования прибора с нарушением действующей нормативно-технической документации.

Используемые аббревиатуры

ПО – программное обеспечение.

ПК – персональный компьютер.

ПЛК – программируемый логический контроллер.

USB — последовательный интерфейс для подключения периферийных устройств к вычислительной технике.

UTC – всемирное координированное время.

RTC – часы реального времени.

1 Назначение

Модуль предназначен для сбора данных со встроенных дискретных входов и передачи их в сеть Ethernet к ПЛК, панельным контроллерам, компьютерам или иным устройствам.

В модуле реализовано 32 дискретных входа, предназначенных для подключения датчиков или сигналов следующих типов:

- Для **MB210-212:** контактный датчик, транзисторный ключ n-p-n типа, транзисторный ключ p-n-p типа.
- Для **MB210-214:** «сухой контакт», транзисторный ключ n-p-n типа.

Модуль предназначен для применения в промышленности и сельском хозяйстве.

Модуль выпускается согласно ТУ 26.51.70-019-46526536-2017.

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики

Таблица 2.1 – Технические характеристики

Характеристика	Значение				
Питание					
Напряжение питания	От 10 до 48 В (номинальное 24 В)				
Потребляемая мощность (при питании 24 B), не более	9 Вт				
Защита от переполюсовки напряжения питания	Есть				
Гистерезис выключения дискретного входа	0,5 B				
Интер	рейсы				
Интерфейс обмена	Сдвоенный Ethernet 10/100 Mbit				
Интерфейс конфигурирования	USB 2.0 (MicroUSB), Ethernet 10/100 Mbit				
Протокол обмена	Modbus TCP; MQTT; SNMP; NTP				
Версия протокола	IPv4				
Дискретные входы	модуля МВ210-212				
Количество входов	32				
Тип сигнала	 контактный датчик (требует внешнее питание =24 В); транзисторный ключ n-p-n типа; транзисторный ключ p-n-p типа; АВ энкодер 				
Режимы работы	 • определение логического уровня; • подсчет количества высокочастотных импульсов (только первые 8); • измерение частоты (только первые 8); • обработка сигналов энкодера (до 3 АВ энкодеров) 				
Минимальная длительность импульса, воспринимаемая дискретным входом (только для DI1–DI8)	5 мкс (до 100 кГц)				
Минимальная длительность единичного импульса (для входов DI9–DI20)	1 мс (до 400 Гц)				
Ток «логического нуля», не более	1,2 мА				
Ток «логической единицы», не более	5,5 mA				
Напряжение «логического нуля»	0,06,1 B				
Напряжение «логической единицы»	8,830,0 B				
Дискретные входы	модуля МВ210-214				
Количество входов	32				
Тип сигнала	• «сухой контакт»; • транзисторный ключ n-p-n типа				
Режимы работы	• определение логического уровня;• подсчет числа импульсов				
Минимальная длительность единичного импульса	1 мс				
Сопротивление контактов (ключа) и соединительных проводов, подключаемых к дискретному входу, не более	100 Ом				

Характеристика	Значение				
Минимальное сопротивление утечки, не менее	10 кОм				
Flash-память (архив)					
Количество циклов записи и стирания	До 100000				
Максимальный размер файла архива	2 Кб				
Максимальное количество файлов архива	1000				
Минимальный период записи архива	10 секунд				
Часы реальн	ого времени				
Погрешность хода, не более:					
– при температуре +25 °C	3 секунды в сутки				
– при температурах –40 °C и +55 °C	10 секунд в сутки				
Тип питания часов реального времени	Батарея CR2032				
Время работы часов реального времени на одной батарее	6 лет				
Общие хара	ктеристики				
Габаритные размеры	(82 × 124 × 83) ±0,5 мм				
Степень защиты корпуса	IP20				
Средняя наработка на отказ*	60 000 ч				
Средний срок службы	10 лет				
Масса, не более	0,6 кг				
ТРИМЕЧАНИЕ * Кроме элемента питания часов реального времени.					

2.2 Изоляция узлов прибора

Схема гальванически изолированных узлов и прочность гальванической изоляции приведены на рисунке 2.1.

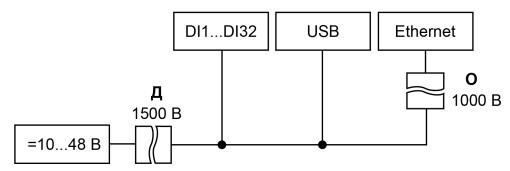


Рисунок 2.1 – Изоляция узлов прибора

Таблица 2.2 – Типы изоляции

Тип	Описание
Основная (О)	Изоляция для частей оборудования, находящихся под напряжением, с целью защиты от поражения электрическим током. Электрическая прочность основной изоляции прибора проверяется типовыми испытаниями: приложением испытательного переменного напряжения, величина которого различна для различных цепей прибора
Дополнительная (Д)	Независимая изоляция, в дополнение к основной изоляции для гарантии защиты от поражения электрическим током в случае отказа основной изоляции. Электрическая прочность дополнительной изоляции прибора проверяется типовыми испытаниями испытательного переменного напряжения различной величины (действующее значение)

ПРЕДУПРЕЖДЕНИЕ

Значение прочности изоляции указано для испытаний при нормальных климатических условиях (время воздействия – 1 минута) согласно ГОСТ IEC 61131-2.

2.3 Условия эксплуатации

Прибор отвечает требованиям по устойчивости к воздействию помех в соответствии с ГОСТ IEC 61131-2. По уровню излучения радиопомех (помехоэмиссии) прибор соответствует нормам, установленным для оборудования класса А по ГОСТ 30804.6.3. Прибор предназначен для эксплуатации в следующих условиях:

- температура окружающего воздуха от минус 40 до плюс 55 °C;
- относительная влажность воздуха от 10 % до 95 % (при +35 °C без конденсации влаги);
- атмосферное давление от 84 до 106,7 кПа;
- закрытые взрывобезопасные помещения без агрессивных паров и газов;
- допустимая степень загрязнения 2 по ГОСТ IEC 61131-2.

По устойчивости к механическим воздействиям во время эксплуатации прибор соответствует ГОСТ IEC 61131-2.

По устойчивости к климатическим воздействиям во время эксплуатации прибор соответствует ГОСТ IEC 61131-2.

Прибор относится к приборам II класса электробезопасности по ГОСТ IEC 61131-2.

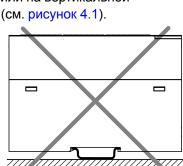
3 Меры безопасности

Во время эксплуатации и технического обслуживания следует соблюдать требования ГОСТ 12.3.019-80, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок потребителей».

Прибор следует устанавливать в специализированных шкафах, доступ внутрь которых разрешен только квалифицированным специалистам. Любые подключения к прибору и работы по его техническому обслуживанию следует проводить только при отключенном питании прибора и подключенных к нему устройств.

Не допускается попадание влаги на контакты выходных разъемов и внутренние элементы прибора.

ВНИМАНИЕ


Запрещено использовать прибор при наличии в атмосфере кислот, щелочей, масел и иных агрессивных веществ.

4 Монтаж

Прибор устанавливается в шкафу электрооборудования. Конструкция шкафа должна обеспечивать защиту прибора от попадания влаги, грязи и посторонних предметов.

Для установки прибора следует выполнить действия:

- 1. Убедиться в наличии свободного пространства для подключения прибора и прокладки проводов.
- 2. Закрепить прибор на DIN-рейке или на вертикальной поверхности с помощью винтов (см. рисунок 4.1).

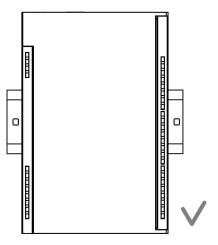
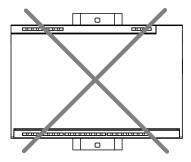
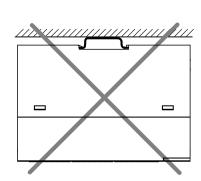
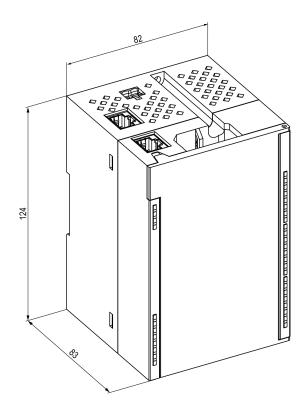
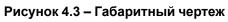



Рисунок 4.1 – Верный монтаж


Рисунок 4.2 – Неверный монтаж

ВНИМАНИЕ

Во время монтажа необходимо свободное пространство минимум в 50 мм над прибором и подним.

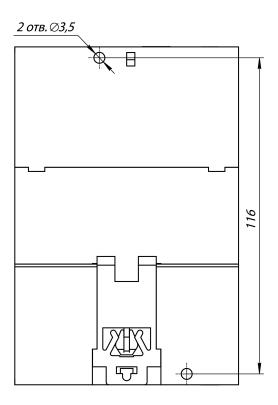


Рисунок 4.4 – Установочные размеры

5 Подключение

5.1 Рекомендации по подключению

Внешние связи монтируют проводом сечением не более 0,75 мм².

Для многожильных проводов следует использовать наконечники.

После монтажа провода следует уложить в кабельном канале корпуса прибора и закрыть крышкой.

Если необходимо снять клеммники модуля, то следует открутить два винта по углам клеммников.

Провода питания следует монтировать с помощью ответного клеммника из комплекта поставки.

ВНИМАНИЕ

Подключение и техническое обслуживание производится только при отключенном питании прибора и подключенных к нему устройств.

ВНИМАНИЕ

Запрещается подключать провода разного сечения к одной клемме.

5.2 Назначение контактов клеммника

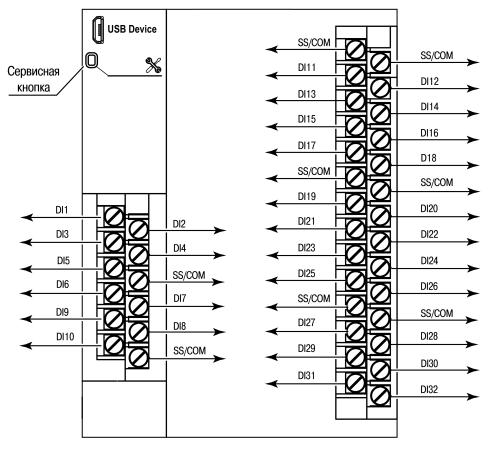


Рисунок 5.1 - Назначение контактов клеммника

Таблица 5.1 - Назначение контактов

Наименование	Назначение
DI1-DI32	Входы DI1–DI32
СОМ (для МВ210-214)	Office Tolks Buttoling Byoton
SS (для MB210-212)	Общая точка питания входов

5.3 Назначение разъемов

Разъемы интерфейсов и питания прибора приведены на рисунке ниже.

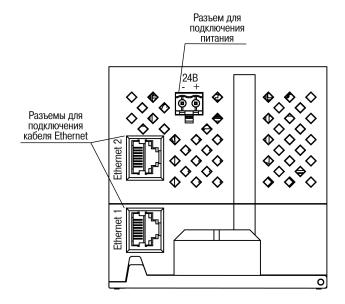


Рисунок 5.2 - Разъемы прибора

5.4 Питание

ВНИМАНИЕ

Рекомендуется применять источник питания с током нагрузки не более 8 А.

ВНИМАНИЕ

Длина кабеля питания не должна превышать 30 м.

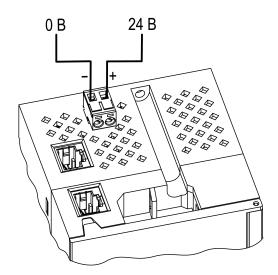


Рисунок 5.3 – Назначение контактов питания

ВНИМАНИЕ

Использование источников питания без потенциальной развязки или с базовой (основной) изоляцией цепей низкого напряжения от линий переменного тока, может привести к появлению опасных напряжений в цепях.

5.1 Подключение к входам

5.1.1 Подключение к дискретным входам контактных датчиков

К прибору можно подключать до 32 датчиков типа «сухой контакт».

Цепи COM/SS объединены внутри прибора.

Схема подключения датчиков к МВ210-212 представлена на рисунке 5.4 и на рисунке 5.5.

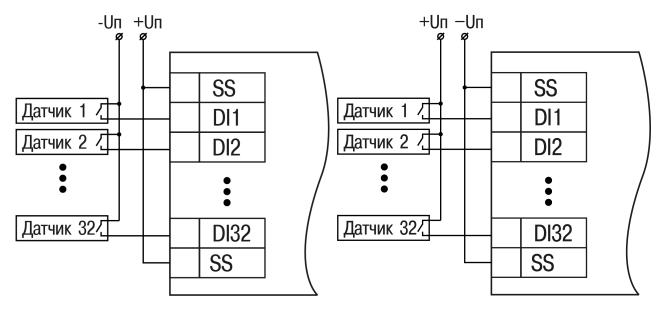


Рисунок 5.4 – Схема подключения к входам DI1-DI32 – вариант 1 (MB210-212)

Рисунок 5.5 – Схема подключения к входам DI1-DI32 – вариант 2 (MB210-212)

 $\lceil \mathbf{i} \rceil$

ПРИМЕЧАНИЕ

Обе схемы равнозначны, допускается использование любой. В случае применения контактных датчиков совместно с датчиками, имеющими на выходе транзисторный ключ, схема подключения должна определяться типом транзисторных датчиков, согласно рисунку 5.7 и рисунку 5.8.

Схема подключения датчиков к МВ210-214 представлена на рисунке 5.6.

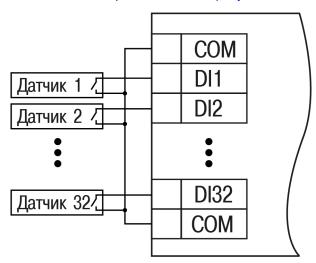


Рисунок 5.6 - Схема подключения к входам DI1-DI32 MB210-214

5.1.2 Подключение сигналов транзисторов p-n-p и n-p-n типов

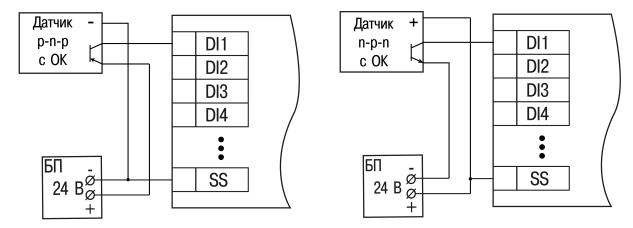


Рисунок 5.7 – Подключение транзисторов p-n-p (МВ210-212)

Рисунок 5.8 – Подключение транзисторов n-p-n (MB210-212)

ПРЕДУПРЕЖДЕНИЕ

Для подключения транзисторов типа n-p-n к дискретным входам следует использовать отдельный источник питания для входов. Клемма SS объединена со входом питания (см. раздел 2.2).

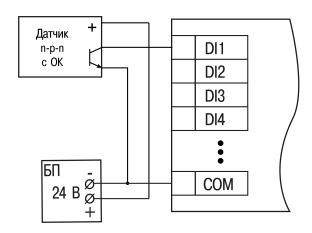


Рисунок 5.9 – Подключение транзисторов n-p-n (МВ210-214)

5.1.3 Подключение энкодеров p-n-p и n-p-n типов

На рисунках ниже представлено подключение энкодеров к модулю МВ210-212.

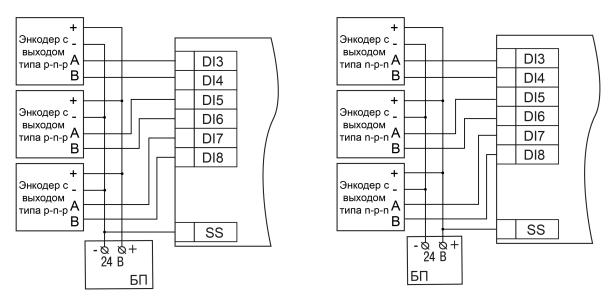


Рисунок 5.10 – Подключение энкодеров типа p-n-p

Рисунок 5.11 – Подключение энкодеров типа n-p-n

5.4 Подключение по интерфейсу Ethernet

Для подключения прибора к сети Ethernet можно использовать следующие схемы:

- «Звезда» (рисунок 5.12);
- «Цепочка»/«Daisy-chain» (рисунок 5.13).

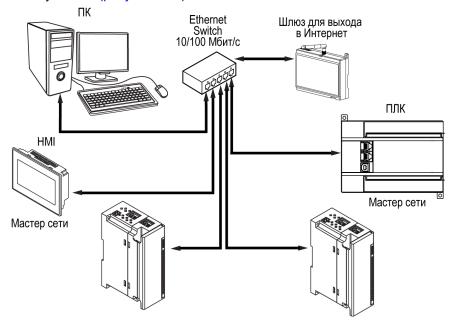


Рисунок 5.12 - Подключение по схеме «Звезда»

ПРЕДУПРЕЖДЕНИЕ

- 1. Максимальная длина линий связи 100 м.
- 2. Подключиться можно к любому Ethernet-порту прибора.
- 3. Незадействованный Ethernet-порт следует закрыть заглушкой.

Для подключения по схеме «Цепочка» следует использовать оба Ethernet-порта прибора. Если прибор вышел из строя или отключилось питание, то данные будут передаваться с порта 1 на порт 2 без разрыва связи.

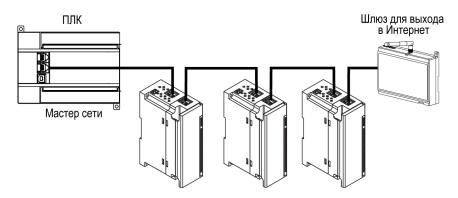


Рисунок 5.13 – Подключение по схеме «Цепочка»

ПРЕДУПРЕЖДЕНИЕ

- 1. Максимальная длина линии связи между двумя соседними активными устройствами при подключении по схеме «Цепочка» должна быть не более 100 м.
- 2. Допускается смежная схема подключения.
- 3. Незадействованный Ethernet-порт следует закрыть заглушкой.

6 Устройство и принцип работы

6.1 Принцип работы

Модуль получает команды от Мастера сети и в ответ отправляет информацию о состоянии дискретных входов.

В качестве Мастера сети можно использовать:

- □K;
- ПЛК;
- панель оператора;
- удаленный облачный сервис.

6.2 Индикация и управление

На лицевой панели прибора расположены элементы индикации — светодиоды. Назначение светодиодов приведено в таблице 6.1.

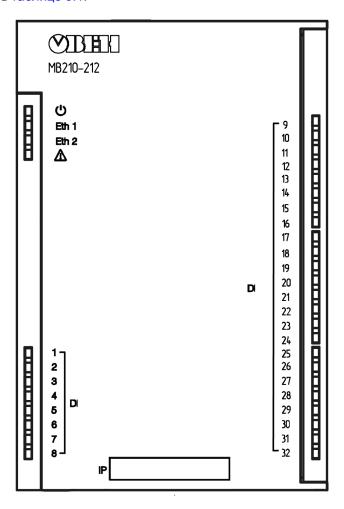


Рисунок 6.1 – Лицевая панель прибора

ПРЕДУПРЕЖДЕНИЕ

В нижней части лицевой панели расположено поле «IP».

Поле «IP» предназначено для нанесения IP-адреса модуля тонким маркером или на бумажной наклейке.

Таблица 6.1 – Назначение индикаторов

Индикатор	Состояние индикатора	Назначение	
Питание (зеленый)	Светится	Напряжение питания прибора подано	
Eth 1 (зеленый)	Мигает	Передача данных по порту 1 Ethernet	
Eth 2 (зеленый)	Мигает	Передача данных по порту 2 Ethernet	
Авария (красный)*	Не светится	Сбои отсутствуют	
	Светится постоянно	Сбой основного приложения и/ или конфигурации	
	Включается на 200 мс один раз в три секунды	Необходимо заменить батарею питания часов (напряжение батареи ниже 2 В)	
	Включается на 100 мс два раза в секунду (через паузу 400 мс)	Модуль находится в безопасног состоянии	
	Включен 900 мс, 100 мс выключен Аппаратный сбой периф (Flash, RTC, Ethernet Sw		
Индикаторы состояния	Светится зеленым	Замкнутое состояние входа	
выходов (зеленый)	Не светится	Разомкнутое состояние входа	

Приоритеты индикации светодиода «Авария» от большего к меньшему: аппаратный сбой, программные ошибки, безопасный режим, уровень заряда батареи.

Под лицевой панелью расположены клеммники и сервисная кнопка.

Сервисная кнопка предназначена для выполнения следующих функций:

- восстановление заводских настроек (раздел 7.10);
- установка ІР-адреса (раздел 7.4);
- обновление встроенного программного обеспечения (раздел 7.8).

6.3 Часы реального времени

В приборе есть встроенные часы реального времени (RTC). Часы реального времени работают от собственного батарейного источника питания.

Отсчет времени производится по UTC в секундах, начиная с 00:00 01 января 2000 года. Значение RTC используется для записи в архив.

Подробнее о настройке часов реального времени см. раздел 7.9.

6.4 Запись архива

В модуль встроена флеш-память (flash), размеченная под файловую систему с шифрованием файлов. Алгоритм шифрования — Data Encryption Standard (DES) в режиме сцепления блоков шифротекста (CBC). В качестве ключа используется строка superkey. Вектор инициализации генерируется с помощью хеш-функции (см. приложение А). Аргументом функции является пароль, заданный в ПО Owen Configurator. В конце файла сохраняется контрольная сумма, рассчитанная по алгоритму CRC32 (контрольная сумма также шифрируется).

Архив модуля сохраняется в виде набора файлов. Период архивации, ограничение на размер одного файла и их количество задается пользователем в ПО Owen Configurator. Если архив полностью заполнен, то данные перезаписываются, начиная с самых старых данных самого старого файла.

Файл архива состоит из набора записей. Записи разделены символами переноса строки (0x0A0D). Каждая запись соответствует одному параметру и состоит из полей, разделенных символом «;» (без кавычек). Формат записи приведен в таблице ниже.

Таблица 6.2 - Формат записи в файле архива

Параметр	Тип	Размер	Комментарий
Метка времени	Binary data	4 байта	В секундах начиная с 00:00 01.01.2000 (UTC+0)
Разделитель	Строка	1 байт	Символ «;» (без кавычек)
Уникальный идентификатор параметра (UID)	Строка	8 байт	В виде строки из НЕХ-символов с ведущими нулями
Разделитель	Строка	1 байт	Символ «;» (без кавычек)
Значение параметра	Строка	зависит от параметра	В виде строки из НЕХ-символов с ведущими нулями
Разделитель	Строка	1 байт	Символ «;» (без кавычек)
Статус параметра	Binary data	1 байт	1 – значение параметра корректно, 0 – значение параметра некорректно и его дальнейшая обработка не рекомендована
Перенос строки	Binary data	2 байта	\n\r (0x0A0D)

Пример

Расшифрованная запись:

где

 $0x52\ 0x82\ 0xD1\ 0x24$ — метка времени. Для получения даты и времени в формате UnixTime следует изменить порядок байт на противоположный и добавить константу-смещение (число секунд между $00:00:00\ 01.01.1970$ и $00:00:00\ 01.01.2000$): $0x24D18252\ (HEX) + 946684800\ (DEC) = 1564394971\ (DEC, соответствует 29 июля <math>2019\ r.$, 10:09:31);

0х3В — разделитель;

0х31 — статус параметра (1 – значение параметра корректно);

0x0A 0x0D — символы переноса строки.

Прибор фиксирует время в архивных файлах по встроенным часам реального времени. Также можно задать часовой пояс, который будет считываться **OwenCloud** или внешним ПО. Запись во флешпамять (flash) происходит с определенной частотой, рассчитанной таким образом, чтобы ресурса флешпамяти (flash) прибора хватило на срок не менее 10 лет работы.

Для чтения архива можно использовать:

- облачный сервис **OwenCloud** (автоматическое чтение в случае потери и дальнейшего восстановления связи);
- ПО Owen Configurator (например, для ручного анализа);
- ПО пользователя (с помощью 20 функции Modbus).

Список архивируемых параметров доступен в **Owen Configurator** на вкладке **Информация об устройстве**. Порядок записи параметров в архив соответствует порядку параметров на вкладке.

Архив считывается с помощью 20 функции Modbus (0x14). Данная функция возвращает содержание регистров файла памяти и позволяет с помощью одного запроса прочитать одну или несколько записей из одного или нескольких файлов.

В запросе чтения файла для каждой записи указывается:

- тип ссылки 1 байт (должен быть равен 6);
- номер файла 2 байта;
- начальный адрес регистра внутри файла 2 байта;
- количество регистров для чтения 2 байта.

ПРИМЕЧАНИЕ

Номер файла в запросе по Modbus рассчитывается как 4096 + порядковый номер файла. Порядковая нумерация файлов ведется с нуля. Параметр «Последний индекс архива» содержит порядковый номер файла архива, в который последний раз записывались данные.

Количество считываемых регистров в запросе должно быть подобрано таким образом, чтобы длина ответа не превышала допустимую длину пакета Modbus (256 байт).

Размер файла архива заранее неизвестен, поэтому следует считывать порции данных с помощью отдельных запросов. Если в ответ на запрос будет получено сообщение с кодом ошибки 0x04 (MODBUS_SLAVE_DEVICE_FAILURE), то можно сделать вывод, что адреса регистров в запросе находятся за пределами файла. Чтобы считать последние данные файла, требуется уменьшить количество регистров в запросе.

ПРИМЕЧАНИЕ

Если отключить питание во время записи данных в архив, запись может не сохраниться.

6.5 Режимы обмена данными

Модуль поддерживает следующие режимы обмена данными:

- обмен с Мастером по протоколу Modbus TCP (порт 502) до 4 одновременных соединений с разными Мастерами сети;
- соединение и обмен данными с ПК с помощью ПО **OWEN Configurator**;
- обмен с удаленным облачным сервисом **OwenCloud** (необходим доступ в Интернет);
- обмен по протоколу MQTT;
- обмен по протоколу SNMP.

6.5.1 Работа по протоколу Modbus TCP

Таблица 6.3 – Чтение и запись параметров по протоколу Modbus TCP

Операция	Функция		
Чтение	3 (0х03) или 4 (0х04)		
Запись	6 (0x06) или 16 (0x10)		

Список регистров Modbus считывается с прибора с помощью ПО **OWEN Configurator** во вкладке **Параметры устройства**. А также список регистров Modbus представлен в таблицах ниже.

Таблица 6.4 – Общие регистры оперативного обмена по протоколу Modbus

Название	Регистр	Размер/тип/описание
Название (имя) прибора для показа пользователю (DEV)	0xF000	Символьная строка до 32 байт, кодировка Win1251
Версия встроенного ПО прибора для показа пользователю (VER)	0xF010	Символьная строка до 32 байт, кодировка Win1251
Название платформы	0xF020	Символьная строка до 32 байт, Win1251

Название	Регистр	Размер/тип/описание
Версия платформы	0xF030	Символьная строка до 32 байт, Win1251
Версия аппаратного обеспечения	0xF040	Символьная строка до 16 байт, Win1251
Дополнительная символьная информация	0xF048	Символьная строка до 16 байт, Win1251
Время и дата	0xF080	4 байта, в секундах с 2000 г
Часовой пояс	0xF082	2 байта, signed short, смещение в минутах от Гринвича
Заводской номер прибора	0xF084	Символьная строка 32 байта, кодировка Win1251, используется 17 символов

Таблица 6.5 – Регистры обмена по протоколу ModBus

Параметр	Значение (ед. изм.)	Адрес регистра		Тип доступа	Формат	
		DEC	HEX		данных	
Время и дата (UTC)	с 2000 г., секунд	61568	0xF080	Только чтение	UINT 32	
Новое время	с 2000 г., секунд	61565	0xF07D	Чтение и запись	UINT 32	
Записать новое время	0 – не записывать; 1 – записать	61567	0xF07F	Чтение и запись	UINT 16	
Часовой пояс	смещение в минутах от Гринвича	61570	0xF082	Чтение и запись	UINT 16	
Время в миллисекундах	_	61563	0xF07B	Только чтение	UINT 32	
Текущий ІР-адрес	_	26	0x1A	Только чтение	UINT 32	
Текущая маска подсети	_	28	0x1C	Только чтение	UINT 32	
Текущий IP-адрес шлюза	_	30	0x1E	Только чтение	UINT 32	
Установить ІР-адрес	_	20	0x14	Чтение и запись	UINT 32	
Установить маску подсети	_	22	0x16	Чтение и запись	UINT 32	
Установить IP-адрес шлюза	_	24	0x18	Чтение и запись	UINT 32	
Режим DHCP	0 – полный запрет; 1 – только чтение; 2 – только запись	32	0x20	Чтение и запись	UINT 16	
Подключение к OwenCloud	0 — выкл.; 1 — вкл.	35	0x23	Чтение и запись	UINT 16	
Статус подключения к OwenCloud	0 – нет связи; 1 – соединение; 2 – работа; 3 – ошибка; 4 – нет пароля	36	0x24	Только чтение	UINT 16	
Тайм-аут перехода в безопасное состояние	060 (секунд)	700	0x2BC	Чтение и запись	UINT 8	
Разрешение конфигурирования из удаленного облачного сервиса	0 – заблокировано; 1 – разрешено	701	0x2BD	Чтение и запись	UINT 16	

Параметр	Значение (ед. изм.)	Адрес регистра		Тип доступа	Формат
		DEC	HEX]	данных
Управление и запись значений из удаленного облачного сервиса	0 – заблокировано; 1 – разрешено	702	0x2BE	Чтение и запись	UINT 16
Доступ к регистрам Modbus из удаленного облачного сервиса	0 – полный запрет; 1 – только чтение; 2 – только запись; 3 – полный доступ	703	0x2BF	Чтение и запись	UINT 16
Статус прибора	_	61620	0xF0B4	Только чтение	UINT 32
МАС адрес	_	61696	0xF100	Только чтение	UINT 48
DNS сервер 1	_	12	0xC	Чтение и запись	UINT 32
DNS сервер 2	_	14	0xE	Чтение и запись	UINT 32
Состояние батареи (напряжение)	03300 (мВ)	801	0x321	Только чтение	UINT 16
Период архивирования	03600 (секунд); заводская настройка – 30	900	0x384	Чтение и запись	UINT 16
Состояние дискретных входов DI1–DI32, битовая маска	04294967295	51	0x33	Только чтение	UINT 32
Дополнительный режим работы входа DI1*	0 – отключен; 1 – подсчет импульсов; 2 – измерение периода; 3 – измерение частоты; 4 – обработка сигналов энкодера	64	0x40	Чтение и запись	UINT 16
Дополнительный режим работы входа DI2*	0 – отключен; 1 – подсчет импульсов; 2 – измерение периода; 3 – измерение частоты; 4 – обработка сигналов энкодера	65	0x41	Чтение и запись	UINT 16
Дополнительный режим работы входа DI3*	0 – отключен; 1 – подсчет импульсов; 2 – измерение периода; 3 – измерение частоты; 4 – обработка сигналов энкодера	66	0x42	Чтение и запись	UINT 16

Параметр	Значение (ед. изм.)	Адрес регистра		Тип доступа	Формат
		DEC	HEX		данных
Дополнительный режим работы входа DI4*	0 – отключен; 1 – подсчет импульсов; 2 – измерение периода; 3 – измерение частоты; 4 – обработка сигналов энкодера	67	0x43	Чтение и запись	UINT 16
Дополнительный режим работы входа DI5*	0 – отключен; 1 – подсчет импульсов; 2 – измерение периода; 3 – измерение частоты; 4 – обработка сигналов энкодера	68	0x44	Чтение и запись	UINT 16
Дополнительный режим работы входа DI6*	0 – отключен; 1 – подсчет импульсов; 2 – измерение периода; 3 – измерение частоты; 4 – обработка сигналов энкодера	69	0x45	Чтение и запись	UINT 16
Дополнительный режим работы входа DI7*	0 – отключен; 1 – подсчет импульсов; 2 – измерение периода; 3 – измерение частоты; 4 – обработка сигналов энкодера	70	0x46	Чтение и запись	UINT 16
Дополнительный режим работы входа DI8*	0 – отключен; 1 – подсчет импульсов; 2 – измерение периода; 3 – измерение частоты; 4 – обработка сигналов энкодера	71	0x47	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI1*	0 — выкл.; 1 — вкл.	96	0x60	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI2*	0 — выкл.; 1 — вкл.	97	0x61	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI3*	0 — выкл.; 1 — вкл.	98	0x62	Чтение и запись	UINT 16

Параметр	Значение (ед. изм.)	Адрес регистра		Тип доступа	Формат
		DEC	HEX]	данных
Зключение фильтра антидребезга для входа DI4*	0 — выкл.; 1 — вкл.	99	0x63	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI5*	0 — выкл.; 1 — вкл.	100	0x64	Чтение и запись	UINT 16
Зключение фильтра антидребезга для входа DI6*	0 — выкл.; 1 — вкл.	101	0x65	Чтение и запись	UINT 16
Зключение фильтра антидребезга для входа DI7*	0 — выкл.; 1 — вкл.	102	0x66	Чтение и запись	UINT 16
Зключение фильтра антидребезга для входа DI8*	0 — выкл.; 1 — вкл.	103	0x67	Чтение и запись	UINT 16
Зключение фильтра антидребезга для входа DI9*	0 — выкл.; 1 — вкл.	104	0x68	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI10*	0 — выкл.; 1 — вкл.	105	0x69	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI11*	0 — выкл.; 1 — вкл.	106	0x6A	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI12*	0 — выкл.; 1 — вкл.	107	0x6B	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI13*	0 — выкл.; 1 — вкл.	108	0x6C	Чтение и запись	UINT 16
Зключение фильтра антидребезга для входа DI14*	0 — выкл.; 1 — вкл.	109	0x6D	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI15*	0 — выкл.; 1 — вкл.	110	0x6E	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI16*	0 — выкл.; 1 — вкл.	111	0x6F	Чтение и запись	UINT 16
Зключение фильтра антидребезга для входа DI17*	0 — выкл.; 1 — вкл.	112	0x70	Чтение и запись	UINT 16
Зключение фильтра антидребезга для входа DI18*	0 — выкл.; 1 — вкл.	113	0x71	Чтение и запись	UINT 16
Зключение фильтра антидребезга для входа DI19*	0 — выкл.; 1 — вкл.	114	0x72	Чтение и запись	UINT 16
Зключение фильтра антидребезга для входа DI20*	0 — выкл.; 1 — вкл.	115	0x73	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI21*	0 — выкл.; 1 — вкл.	116	0x74	Чтение и запись	UINT 16

Параметр	Значение (ед. изм.)	Адрес р	егистра	Тип доступа	Формат
		DEC	HEX		данных
Включение фильтра антидребезга для входа DI22*	0 — выкл.; 1 — вкл.	117	0x75	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI23*	0 — выкл.; 1 — вкл.	118	0x76	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI24*	0 — выкл.; 1 — вкл.	119	0x77	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI25*	0 — выкл.; 1 — вкл.	120	0x78	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI26*	0 — выкл.; 1 — вкл.	121	0x79	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI27*	0 — выкл.; 1 — вкл.	122	0x7A	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI28*	0 — выкл.; 1 — вкл.	123	0x7B	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI29*	0 — выкл.; 1 — вкл.	124	0x7C	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI30*	0 — выкл.; 1 — вкл.	125	0x7D	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI31*	0 — выкл.; 1 — вкл.	126	0x7E	Чтение и запись	UINT 16
Включение фильтра антидребезга для входа DI32*	0 — выкл.; 1 — вкл.	127	0x7F	Чтение и запись	UINT 16
Период измерения частоты входа DI1*	0 – 10 миллисекунд; 1 – 100 миллисекунд; 2 – 1 секунда; 3 – 10 секунд	128	0x80	Чтение и запись	UINT 16
Период измерения частоты входа DI2*	0 – 10 миллисекунд; 1 – 100 миллисекунд; 2 – 1 секунда; 3 – 10 секунд	129	0x81	Чтение и запись	UINT 16
Период измерения частоты входа DI3*	0 – 10 миллисекунд; 1 – 100 миллисекунд; 2 – 1 секунда; 3 – 10 секунд	130	0x82	Чтение и запись	UINT 16
Период измерения частоты входа DI4*	0 – 10 миллисекунд; 1 – 100 миллисекунд; 2 – 1 секунда; 3 – 10 секунд	131	0x83	Чтение и запись	UINT 16
Период измерения частоты входа DI5*	0 – 10 миллисекунд; 1 – 100 миллисекунд; 2 – 1 секунда; 3 – 10 секунд	132	0x84	Чтение и запись	UINT 16

Параметр	Значение (ед. изм.)	Адрес р	егистра	Тип доступа	Формат	
		DEC	HEX		данных	
Период измерения частоты входа DI6*	0 – 10 миллисекунд; 1 – 100 миллисекунд; 2 – 1 секунда; 3 – 10 секунд	133	0x85	Чтение и запись	UINT 16	
Период измерения частоты входа DI7*	0 – 10 миллисекунд; 1 – 100 миллисекунд; 2 – 1 секунда; 3 – 10 секунд	134	0x86	Чтение и запись	UINT 16	
Период измерения частоты входа DI8*	0 – 10 миллисекунд; 1 – 100 миллисекунд; 2 – 1 секунда; 3 – 10 секунд	135	0x87	Чтение и запись	UINT 16	
Значение входа DI1 в дополнительном режиме*	04294967295 (импульсы) – режим 1; 104294967295 (мс) – режим 2 100 4294967295 (Гц) – режим 3; 04294967295 (импульсы) – режим 4	160	0xA0	Только чтение	UINT 32	
Значение входа DI2 в дополнительном режиме*	04294967295 (импульсы) – режим 1; 104294967295 (мс) – режим 2 100 4294967295 (Гц) – режим 3; 04294967295 (импульсы) – режим 4	162	0xA2	Только чтение	UINT 32	
Значение входа DI3 в дополнительном режиме*	04294967295 (импульсы) – режим 1; 104294967295 (мс) – режим 2 100 4294967295 (Гц) – режим 3; 04294967295 (импульсы) – режим 4	164	0xA4	Только чтение	UINT 32	
Значение входа DI4 в дополнительном режиме*	04294967295 (импульсы) – режим 1; 104294967295 (мс) – режим 2 100 4294967295 (Гц) – режим 3; 04294967295 (импульсы) – режим 4	166	0xA6	Только чтение	UINT 32	
Значение входа DI5 в дополнительном режиме*	О4294967295 (импульсы) – режим 1; 104294967295 (мс) – режим 2 100 4294967295 (Гц) – режим 3; О4294967295 (импульсы) – режим 4	168	0xA8	Только чтение	UINT 32	

Параметр	Значение (ед. изм.)	Адрес регистра		Тип доступа	Формат
		DEC	DEC HEX		данных
Значение входа DI6 в дополнительном режиме*	04294967295 (импульсы) – режим 1; 104294967295 (мс) – режим 2 100 4294967295 (Гц) – режим 3; 04294967295 (импульсы) – режим 4	170	0xAA	Только чтение	UINT 32
Значение входа DI7 в дополнительном режиме*	04294967295 (импульсы) – режим 1; 104294967295 (мс) – режим 2 100 4294967295 (Гц) – режим 3; 04294967295 (импульсы) – режим 4	172	0xAC	Только чтение	UINT 32
Значение входа DI8 в дополнительном режиме*	04294967295 (импульсы) – режим 1; 104294967295 (мс) – режим 2 100 4294967295 (Гц) – режим 3; 04294967295 (импульсы) – режим 4	174	0xAE	Только чтение	UINT 32
Значение счетчика импульсов входа DI9	04294967295 (импульсы)	176	0xB0	Только чтение	UINT 32
Значение счетчика импульсов входа DI10	04294967295 (импульсы)	178	0xB2	Только чтение	UINT 32
Значение счетчика импульсов входа DI11	04294967295 (импульсы)	180	0xB4	Только чтение	UINT 32
Значение счетчика импульсов входа DI12	04294967295 (импульсы)	182	0xB6	Только чтение	UINT 32
Значение счетчика импульсов входа DI13	04294967295 (импульсы)	184	0xB8	Только чтение	UINT 32
Значение счетчика импульсов входа DI14	04294967295 (импульсы)	186	0xBA	Только чтение	UINT 32
Значение счетчика импульсов входа DI15	04294967295 (импульсы)	188	0xBC	Только чтение	UINT 32
Значение счетчика импульсов входа DI16	04294967295 (импульсы)	190	0xBE	Только чтение	UINT 32
Значение счетчика импульсов входа DI17	04294967295 (импульсы)	192	0xC01	Только чтение	UINT 32
Значение счетчика импульсов входа DI18	04294967295 (импульсы)	194	0xC2	Только чтение	UINT 32
Значение счетчика импульсов входа DI19	04294967295 (импульсы)	196	0xC4	Только чтение	UINT 32
Значение счетчика импульсов входа DI20	04294967295 (импульсы)	198	0xC6	Только чтение	UINT 32
Значение счетчика импульсов входа DI21	04294967295 (импульсы)	200	0xC8	Только чтение	UINT 32
Значение счетчика импульсов входа DI22	04294967295 (импульсы)	202	0xCA	Только чтение	UINT 32

Параметр	Значение (ед. изм.)	Адрес регистра		Тип доступа	Формат
		DEC	HEX		данных
Значение счетчика импульсов входа DI23	04294967295 (импульсы)	204	0xCC	Только чтение	UINT 32
Значение счетчика импульсов входа DI24	04294967295 (импульсы)	206	0xCE	Только чтение	UINT 32
Значение счетчика импульсов входа DI25	04294967295 (импульсы)	208	0xD0	Только чтение	UINT 32
Значение счетчика импульсов входа DI26	04294967295 (импульсы)	210	0xD2	Только чтение	UINT 32
Значение счетчика импульсов входа DI27	04294967295 (импульсы)	212	0xD4	Только чтение	UINT 32
Значение счетчика импульсов входа DI28	04294967295 (импульсы)	214	0xD6	Только чтение	UINT 32
Значение счетчика импульсов входа DI29	04294967295 (импульсы)	216	0xD8	Только чтение	UINT 32
Значение счетчика импульсов входа DI30	04294967295 (импульсы)	218	0xDA	Только чтение	UINT 32
Значение счетчика импульсов входа DI31	04294967295 (импульсы)	220	0xDC	Только чтение	UINT 32
Значение счетчика импульсов входа DI32	04294967295 (импульсы)	222	0xDE	Только чтение	UINT 32
Сброс значения дополнительного режима входа DI1*	0 – сбросить; 1 – не сброшен	224	0xE0	Чтение и запись	UINT 16
Сброс значения дополнительного режима входа DI2*	0 – сбросить; 1 – не сброшен	225	0xE1	Чтение и запись	UINT 16
Сброс значения дополнительного режима входа DI3*	0 – сбросить; 1 – не сброшен	226	0xE2	Чтение и запись	UINT 16
Сброс значения дополнительного режима входа DI4*	0 – сбросить; 1 – не сброшен	227	0xE3	Чтение и запись	UINT 16
Сброс значения дополнительного режима входа DI5*	0 – сбросить; 1 – не сброшен	228	0xE4	Чтение и запись	UINT 16
Сброс значения дополнительного режима входа DI6*	0 – сбросить; 1 – не сброшен	229	0xE5	Чтение и запись	UINT 16
Сброс значения дополнительного режима входа DI7*	0 – сбросить; 1 – не сброшен	230	0xE6	Чтение и запись	UINT 16
Сброс значения дополнительного режима входа DI8*	0 – сбросить; 1 – не сброшен	231	0xE7	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI9	0 – сбросить; 1 – не сброшен	232	0xE8	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI10	0 – сбросить; 1 – не сброшен	233	0xE9	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI11	0 – сбросить; 1 – не сброшен	234	0xEA	Чтение и запись	UINT 16

Параметр	Значение (ед. изм.)	Адрес регистра		Тип доступа	Формат
		DEC	HEX		данных
Сброс значения счетчика импульсов входа DI12	0 – сбросить; 1 – не сброшен	235	0xEB	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI13	0 – сбросить; 1 – не сброшен	236	0xEC	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI14	0 – сбросить; 1 – не сброшен	237	0xED	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI15	0 – сбросить; 1 – не сброшен	238	0xEE	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI16	0 – сбросить; 1 – не сброшен	239	0xEF	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI17	0 – сбросить; 1 – не сброшен	240	0xF0	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI18	0 – сбросить; 1 – не сброшен	241	0xF1	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI19	0 – сбросить; 1 – не сброшен	242	0xF2	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI20	0 – сбросить; 1 – не сброшен	243	0xF3	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI21	0 – сбросить; 1 – не сброшен	244	0xF4	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI22	0 – сбросить; 1 – не сброшен	245	0xF5	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI23	0 – сбросить; 1 – не сброшен	246	0xF6	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI24	0 – сбросить; 1 – не сброшен	247	0xF7	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI25	0 – сбросить; 1 – не сброшен	248	0xF8	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI26	0 – сбросить; 1 – не сброшен	249	0xF9	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI27	0 – сбросить; 1 – не сброшен	250	0xFA	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI28	0 – сбросить; 1 – не сброшен	251	0xFB	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI29	0 – сбросить; 1 – не сброшен	252	0xFC	Чтение и запись	UINT 16

Параметр	Значение (ед. изм.)	Адрес регистра		Тип доступа	Формат
		DEC	HEX		данных
Сброс значения счетчика импульсов входа DI30	0 – сбросить; 1 – не сброшен	253	0xFD	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI31	0 – сбросить; 1 – не сброшен	254	0xFE	Чтение и запись	UINT 16
Сброс значения счетчика импульсов входа DI32	0 – сбросить; 1 – не сброшен	255	0xFF	Чтение и запись	UINT 16
Включение/ Отключение NTP	0 — выкл.; 1 — вкл.	5632	0x1600	Чтение и запись	UINT 16
Пул NTP серверов	_	5633	0x1601	Чтение и запись	STRING 256
NTP сервер 1	_	5697	0x1641	Чтение и запись	UINT 32
NTP сервер 2	_	5699	0x6143	Чтение и запись	UINT 32
Период синхронизации NTP	565535 c	5701	0x1645	Чтение и запись	UINT 16
Статус NTP	0 – отключено; 1 – опрос; 2 – синхронизировано	5702	0x1646	Чтение и запись	UINT 16
Подключение к брокеру MQTT	0 — выкл.; 1 — вкл.	5888	0x1700	Только чтение	UINT 16
Логин MQTT	_	5928	0x1728	Чтение и запись	STRING 256
Пароль MQTT	_	5960	0x1748	Чтение и запись	STRING 256
Имя устройства MQTT	_	5896	0x1708	Чтение и запись	STRING 256
Адрес брокера MQTT	_	5993	0x1769	Чтение и запись	STRING 256
Порт MQTT	065535	5891	0x1703	Чтение и запись	UINT 16
Хранение последнего сообщения MQTT	0 — выкл.; 1 — вкл.	5895	0x1707	Чтение и запись	UINT 16
Интервал публикации MQTT	5600 c	5892	0x1704	Чтение и запись	UINT 16
Качество обслуживания MQTT	0 – QoS0; 1 – QoS1; 2 – QoS2	5893	0x1705	Чтение и запись	UINT 16
Интервал Кеер Alive MQTT	0600 с	5992	0x1768	Чтение и запись	UINT 16
Статус MQTT	0 – отключено; 1 – опрос; 2 – синхронизировано	6025	0x1789	Только чтение	UINT 16
Включить (MQTTstatus)	0 — выкл.; 1 — вкл.	6026	0x158A	Чтение и запись	UINT 16
Включение/ Отключение SNMP	0 — выкл.; 1 — вкл.	5120	0x1400	Чтение и запись	UINT 16
Сообщество для чтения SNMP	_	6001	0x1771	Чтение и запись	STRING 256
Сообщество для записи SNMP	_	6017	0x1781	Чтение и запись	STRING 256

Параметр	Значение (ед. изм.)	Адрес регистра		Тип доступа	Формат
		DEC	HEX		данных
IP адрес для ловушки SNMP	_	5121	0x1401	Чтение и запись	UINT 32
Номер порта для ловушки	065535	5123	0x1403	Чтение и запись	UINT 16
Версия SNMP	0 – SNMPv1; 1 – SNMPv2	5124	0x1404	Чтение и запись	UINT 16

ПРИМЕЧАНИЕ* Только для мо

* Только для модуля МВ210-212.

6.5.2 Коды ошибок для протокола Modbus

Во время работы модуля по протоколу Modbus возможно возникновение ошибок, представленных в таблице 6.6. В случае возникновения ошибки модуль отправляет Мастеру сети ответ с кодом ошибки.

Таблица 6.6 - Список возможных ошибок

Название ошибки	Возвращаемый код	Описание ошибки
MODBUS_ILLEGAL_FUNCTION	01 (0x01)	Недопустимый код функции – ошибка возникает, если модуль не поддерживает функцию Modbus, указанную в запросе
MODBUS_ILLEGAL_DATA_ ADDRESS	02 (0x02)	Недопустимый адрес регистра – ошибка возникает, если в запросе указаны адреса регистров, отсутствующие в модуле
MODBUS_ILLEGAL_DATA_ VALUE	03 (0x03)	Недопустимое значение данных – ошибка возникает, если запрос содержит недопустимое значение для записи в регистр
MODBUS_SLAVE_DEVICE_ FAILURE	04 (0x04)	Ошибка возникает, если запрошенное действие не может быть завершено

Во время обмена по протоколу Modbus модуль проверяет соответствие запросов спецификации Modbus. Не прошедшие проверку запросы игнорируются модулем. Запросы, в которых указан адрес, не соответствующий адресу модуля, также игнорируются.

Далее проверяется код функции. Если в модуль приходит запрос с кодом функции, не указанной в таблице 6.7, возникает ошибка MODBUS_ILLEGAL_FUNCTION.

Таблица 6.7 - Список поддерживаемых функций

Название функции	Код функции	Описание функции
MODBUS_READ_HOLDING_ REGISTERS	3 (0x03)	Чтение значений из одного или нескольких регистров хранения
MODBUS_READ_INPUT_ REGISTERS	4 (0x04)	Чтение значений из одного или нескольких регистров ввода
MODBUS_WRITE_SINGLE_ REGISTER	6 (0x06)	Запись значения в один регистр
MODBUS_WRITE_MULTIPLE_ REGISTERS	16 (0x10)	Запись значений в несколько регистров
MODBUS_READ_FILE_RECORD	20 (0x14)	Чтение архива из файла
MODBUS_WRITE_FILE_ RECORD	21 (0x15)	Запись архива в файл

Ситуации, приводящие к возникновению ошибок во время работы с регистрами, описаны в таблице 6.8.

Таблица 6.8 – Ошибки во время работы с регистрами

Используемая функция	Наименование ошибки	Возможные ситуации, приводящие к ошибке
MODBUS_READ_ HOLDING_REGISTERS	MODBUS_ILLEGAL_DATA_ ADDRESS	 количество запрашиваемых регистров больше максимального возможного числа (125); запрос несуществующего параметра
MODBUS_READ_INPUT_ REGISTERS	MODBUS_ILLEGAL_DATA_ ADDRESS	 количество запрашиваемых регистров больше максимального возможного числа (125); запрос несуществующего параметра
MODBUS_WRITE_SINGLE_ REGISTER	MODBUS_ILLEGAL_DATA_ ADDRESS	 попытка записи параметра, размер которого превышает 2 байта; попытка записи параметра, доступ на запись к которому запрещен; попытка записи параметра такого типа, запись в который не может быть осуществлена данной функцией. Поддерживаемые типы: знаковые и беззнаковые целые (размер не более 2 байт); перечисляемые; float16 (на данный момент в модуле такой тип не используется). запрос несуществующего параметра выход за пределы максимального или
	MODBUS_ILLEGAL_DATA_ VALUE	минимального ограничений для параметра • запись несуществующего параметра;
MODBUS_WRITE_ MULTIPLE_REGISTERS	MODBUS_ILLEGAL_DATA_ ADDRESS	 попытка записи параметра, доступ на запись к которому запрещен; количество записываемых регистров больше максимального возможного числа (123)
	MODBUS_ILLEGAL_DATA_ VALUE	 не найден терминирующий символ (\0) в строковом параметре; размер запрашиваемых данных меньше размера первого или последнего в запросе параметра; выход за пределы максимального или минимального ограничений для параметра

Ситуации, приводящие к возникновению ошибок во время работы с архивом, описаны в таблице 6.9.

Таблица 6.9 – Ошибки во время работы с архивом

Используемая функция	Наименование ошибки	Возможные ситуации, приводящие к ошибке
MODBUS_READ_FILE_ RECORD	MODBUS_ILLEGAL_ FUNCTION	• ошибочный размер данных (0x07 <= data length <= 0xF5)

Используемая функция	Наименование ошибки	Возможные ситуации, приводящие к ошибке
	MODBUS_ILLEGAL_DATA_ ADDRESS	• reference type не соответствует спецификации; • не удалось открыть файл для чтения
		(возможно, он отсутствует) • не удалось переместиться к нужному
	MODBUS_ILLEGAL_DATA_ VALUE	смещению в файле
		 ошибка удаления файла при запросе на удаление; запрос слишком большого количества
	MODBUS_SLAVE_DEVICE_ FAILURE	данных (больше 250 байт); • недопустимый record number (больше
		0x270F); • недопустимый record length (больше 0x7A)
MODBUS_WRITE_FILE_ RECORD	MODBUS_ILLEGAL_ FUNCTION	• ошибочный размер данных (0х09 <= data length <= 0хFB)
	MODBUS_ILLEGAL_DATA_ ADDRESS	 reference type не соответствует спецификации; не удалось открыть файл для записи
	MODBUS_SLAVE_DEVICE_ FAILURE	 запрашиваемый файл отсутствует; запрашиваемый файл доступен только для чтения; не удалось записать необходимое
		, ,

6.5.3 Работа по протоколу MQTT

Архитектура MQTT определяет три типа устройств в сети:

- **брокер** устройство (обычно ПК с серверным ПО), которое осуществляет передачу сообщений от издателей к подписчикам;
- издатели устройства, которые являются источниками данных для подписчиков;
- подписчики устройства, которые получают данные от издателей.

Одно устройство может совмещать функции издателя и подписчика.

Рисунок 6.2 – Структурная схема обмена по протоколу MQTT

Подписка и публикация данных происходит в рамках топиков. Топик представляет собой символьную строку с кодировкой UTF-8, которая позволяет однозначно идентифицировать определенный параметр. Топики состоят из уровней, разделяемых симводом «/».

ПРИМЕЧАНИЕ

Топики MQTT могут включать в себя заполнители – специальные символы, которые обрабатываются брокером особым образом. Существует два типа заполнителей – одноуровневый заполнитель «+» и многоуровневый заполнитель «#».

ПРЕДУПРЕЖДЕНИЕ

Топики являются чувствительными к регистру.

Структура топиков модулей: Серия/Имя_устройства/Функция/Имя_узла/Параметр, где:

- Серия наименование серии устройства, всегда имеет значение МХ210;
- Имя_устройства имя конкретного модуля, заданное в ПО Owen Configurator (см. раздел 7.1);
- **Функция** GET (чтение значений входов или выходов) или SET (запись значений выходов модуля);
- Имя_узла тип входов или выходов (DI/DI/AI/AO);
- Параметр название конкретного параметра (см. таблицу 6.10).

Таблица 6.10 - Уровни топиков модуля

Серия	Имя устрой- ства	Функция	Имя узла	Параметр	Описание	Формат значения
MX210	Device	GET	DI	MASK	Битовая маска дискретных входов	Целочисленный
MX210	Device	GET	DI1-DI20	COUNTER	Значение счетчика / дополнительного режима*	Целочисленный

ПРИМЕЧАНИЕ

* Только для МВ210-212

Пример

1. Чтение значения дискретных входов

MX210/Device/GET/DI/MASK

Пример полученного значения: 15 (замкнуты входы 1-4)

2. Использование одноуровневого заполнителя

MX210/Device1/SET/+/COUNTER – будет получена информация о значениях счетчиков всех дискретных входов модуля, то есть этот топик эквивалентен набору топиков:

MX210/Device1/GET/DI1/COUNTER MX210/Device1/GET/DI2/COUNTER MX210/Device1/GET/.../COUNTER

MX210/Device1/GET/DIn/COUNTER

3. Использование многоуровневого заполнителя

MX210/Device1/GET/# – будет получена информация о всех параметрах модуля, доступных для чтения (GET), то есть этот топик эквивалентен набору топиков:

MX210/Device1/GET/DI/MASK MX210/Device1/GET/DI1/COUNTER MX210/Device1/GET/DI2/COUNTER MX210/Device1/GET/.../COUNTER

MX210/Device1/GET/DIn/COUNTER

6.5.4 Работа по протоколу SNMP

Протокол основан на архитектуре «Клиент/Сервер», при этом в терминологии протокола клиенты называются **менеджерами**, а серверы – **агентами**.

Менеджеры могут производить чтение (**GET**) и запись (**SET**) параметров агентов. Агенты могут отправлять менеджерам уведомления (**трапы**) – например, о переходе оборудования в аварийное состояние.

Каждый параметр агента имеет уникальный идентификатор (**OID**), представляющий собой последовательность цифр, разделенных точками. Для упрощения настройки обмена производители устройств-агентов обычно предоставляют МІВ-файлы, которые включают в себя список параметров прибора с их названиями и идентификаторами. Эти файлы могут быть импортированы в SNMP-менеджер.

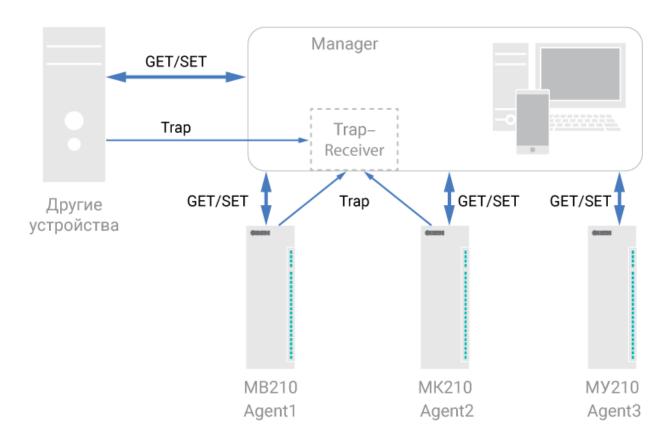


Рисунок 6.3 - Структурная схема обмена по протоколу SNMP

6.6 Режимы работы дискретных входов

Входы модуля работают в режиме определения логического уровня.

Для каждого входа задействован счетчик импульсов, поступающих на вход.

ПРИМЕЧАНИЕ

По умолчанию счетчики входов всегда включены. Счетчики входов с дополнительными режимами включены только в том случае, если дополнительный режим у входа отключен.

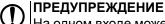
Таблица 6.11 - Параметры счетчика импульсов

Параметр	Значение
Разрядность	32 бит
Максимальная частота входного сигнала	400 Гц
Подавление дребезга	Вкл./выкл. Настраивается в ПО OWEN Configurator
Время подавления дребезга	25 мс (не настраивается)

ВНИМАНИЕ

Для работы с сигналами частотой более 40 Гц при скважности 0,5 и менее не следует включать подавление дребезга контактов, так как полезный сигнал будет принят за дребезг и пропущен.

Если счетчик переполнился, то соответствующий регистр обнуляется автоматически. Последовательность действий для принудительного обнуления приведена в разделе 7.11.


ПРИМЕЧАНИЕ

Счетчики входов являются энергонезависимыми, их значения сохраняются после перезагрузки модуля. Счетчики входов с дополнительными режимами после перезагрузки обнуляются.

Значения состояния дискретных входов хранятся в виде битовой маски и считываются из соответствующего регистра.

Первые 8 входов модуля МВ210-212 поддерживают следующие дополнительные режимы работы:

- подсчет количества высокочастотных импульсов (см. раздел 6.6.2);
- измерение частоты (см. раздел 6.6.3);
- обработка сигналов энкодера (см. раздел 6.6.4). Возможно подключение до 3 энкодеров.

На одном входе может быть включен только один дополнительный режим работы.

Выбирать и настраивать режимы следует:

- в параметре Дополнительный режим работы ПО OWEN Configurator;
- из удаленного облачного сервера;
- по протоколу Modbus TCP.

6.6.1 Режим определения логического уровня

Группа входов DI1-DI20 модуля выполняет определение логического уровня.

По опросу модуль возвращает в регистр Modbus битовую маску, соответствующую состоянию входов. Определение логического уровня производится постоянно и не зависит от включения режима счетчика импульсов, измерения частоты или обработки сигналов энкодера.

6.6.2 Режим подсчета числа высокочастотных импульсов

Режим подсчета числа высокочастотных импульсов работает для входов DI1-DI8.

Максимальная частота входного сигнала — 100 кГц при коэффициенте заполнения 0,5.

Для каждого входа задействован 32-разрядный счетчик. Значения счетчика входа считываются из регистра, соответствующего данному входу.

В случае переполнения счетчика значение обнуляется. Для принудительного обнуления счетчика следует записать значение 0 в регистр сброса значения входа. Обнуление счетчика будет произведено в течение 10 мс после записи значения 0.

6.6.3 Режим измерения частоты и периода

Входы DI1-DI8 можно настроить на режим измерения частоты или периода.

Диапазоны измерения:

- в режиме «измерение частоты» от 100 Гц до 100 кГц;
- в режиме «измерение периода» от 0 мс до 10 мс.

Интервал измерения частоты или периода настраивается в параметре «Период измерения».

Возможные значения параметра «**Период измерения**»: 10 мс, 100 мс, 1 с, 10 с. Значение по умолчанию – 10 мс.

Для отображения измеренных значений частоты или периода задействован 32-разрядный регистр.

6.6.4 Режим обработки сигналов с энкодера

К модулю возможно подключение до трех двухканальных энкодеров (без Z канала). Номера входов для подключения: 3-4, 5-6, 7-8.

Максимальная частота сигналов с энкодера – 100 кГц.

Для каждого входа задействован 32—разрядный счетчик, в котором находится накопленное количество импульсов с учетом направления вращения после обнуления, зафиксированное энкодером. Если после обнуления направление вращения меняется, то счет начинается с максимального и уменьшается на количество накопленных импульсов.

Значения счетчика входа считываются из регистра, соответствующего данному входу.

В случае переполнения счетчика значение обнуляется. Для принудительного обнуления счетчика следует записать значение 0 в регистр сброса значения счетчика. Обнуление счетчика будет произведено в течение 10 мс после записи значения 0.

7 Настройка

7.1 Подключение к ПО «OWEN Configurator»

Прибор настраивается в ПО OWEN Configurator.

Прибор можно подключить к ПК с помощью следующих интерфейсов:

- USB (разъем micro-USB);
- Ethernet.

Для выбора интерфейса следует:

1. Подключить прибор к ПК с помощью кабеля USB или по интерфейсу Ethernet.

|ПРЕДУПРЕЖДЕНИЕ

В случае подключения прибора к порту USB подача основного питания прибора не требуется.

Питание прибора осуществляется от порта USB.

В случае подключения по интерфейсу Ethernet следует подать основное питание на прибор.

- 2. Открыть ПО OWEN Configurator.
- 3. Выбрать Добавить устройства.
- 4. В выпадающем меню Интерфейс во вкладке Сетевые настройки выбрать:
 - Ethernet (или другую сетевую карту, к которой подключен прибор) для подключения по Ethernet.
 - STMicroelectronics Virtual COM Port для подключения по USB.

Сетевые настройки

Интерфейс

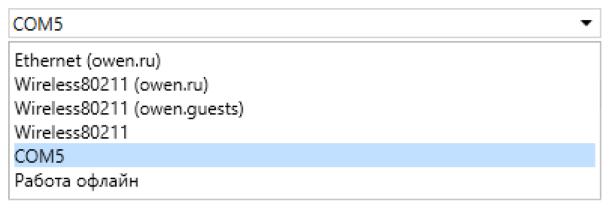


Рисунок 7.1 - Меню выбора интерфейса

Дальнейшие шаги для поиска устройства зависят от выбора интерфейса.

Чтобы найти и добавить в проект прибор, подключенный по интерфейсу Ethernet, следует:

- 1. Выбрать Найти одно устройство.
- 2. Ввести ІР-адрес подключенного устройства.
- 3. Нажать вкладку Найти. В окне отобразится прибор с указанным IP-адресом.

ПРЕДУПРЕЖДЕНИЕ

Значение ІР-адреса по умолчанию (заводская настройка) — 192.168.1.99.

4. Выбрать устройство (отметить галочкой) и нажать **ОК**. Если устройство защищено паролем, то следует ввести корректный пароль. Устройство будет добавлено в проект.

Чтобы найти и добавить в проект прибор, подключенный по интерфейсу USB, следует:

1. В выпадающем меню Протокол выбрать протокол Owen Auto Detection Protocol.

Рисунок 7.2 - Выбор протокола

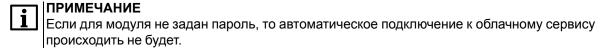
- 2. Выбрать Найти одно устройство.
- 3. Ввести адрес подключенного устройства (по умолчанию 1).
- 4. Нажать вкладку Найти. В окне отобразится прибор с указанным адресом.
- 5. Выбрать устройство (отметить галочкой) и нажать **ОК**. Если устройство защищено паролем, то следует ввести корректный пароль. Устройство будет добавлено в проект.

Более подробная информация о подключении и работе с прибором приведена в Справке ПО **OWEN Configurator**. Для вызова справки в программе следует нажать клавишу **F1**.

7.2 Подключение к облачному сервису OwenCloud

Для подключения модуля к облачному сервису следует выполнить действия:

- 1. Подключить модуль к **Owen Configurator** (см. раздел 7.1).
- 2. Включить доступ к **OwenCloud** и настроить права удаленного доступа (см. раздел 7.3).
- 3. Задать пароль для доступа к прибору (см. Справку Owen Configurator).
 - ПРЕДУПРЕЖДЕНИЕ Если пароль не задан, подключение к облачному сервису недоступно.
- 4. Зайти на сайт облачного сервиса OwenCloud.
- 5. Перейти в раздел Администрирование 🕙 и добавить прибор.


Подробный пример настройки подключения к **OwenCloud** можно посмотреть в документе «Mx210. Примеры настройки обмена» на странице прибора на сайте www.owen.ru.

7.3 Ограничение обмена данными при работе с облачным сервисом OwenCloud

Облачный сервис **OwenCloud** является надежным хранилищем данных, обмен информации с которым зашифрован модулем. Если на производстве имеются ограничения на передачу данных, то обмен данными с облачным сервисом **OwenCloud** можно отключить. По умолчанию подключение модуля к облачному сервису запрещено. Ограничение доступа и обмена данными с модулем следует настраивать в ПО **Owen Configurator**.

Для разрешения подключения в Owen Configurator следует:

- 1. Установить пароль для доступа к модулю (см. раздел 7.7).
- 2. Задать значение **Вкл.** в параметре **Подключение к OwenCloud** (рисунок 7.3).

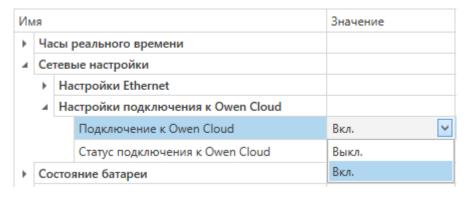


Рисунок 7.3 – Настройка автоматического подключения к облачному сервису

Если доступ к модулю через облачный сервис **OwenCloud** разрешен, то можно настроить следующие ограничения доступа (рисунок 7.4):

- Разрешение конфигурирования доступ к конфигурационным параметрам модуля;
- Управление и запись значений чтение и запись значений модуля;
- Доступ к регистрам Modbus чтение и/или запись значений регистров.

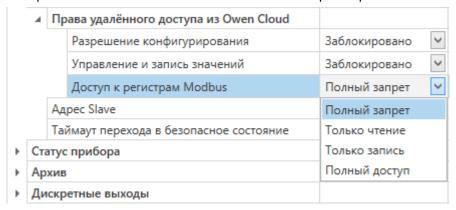


Рисунок 7.4 – Настройка удаленного доступа к модулю

7.4 Настройка сетевых параметров

Для обмена данных модуля в сети Ethernet должны быть заданы параметры, приведенные в таблице 7.1:

Таблица 7.1 - Сетевые параметры модуля

Параметр	Примечание
МАС-адрес	Устанавливается на заводе-изготовителе и является неизменным
ІР-адрес	Может быть статическим или динамическим. Заводская настройка – 192.168.1.99
Маска ІР-адреса	Задает видимую модулем подсеть ІР-адресов других устройств. Заводская
	настройка – 255.255.0.0
ІР-адрес шлюза	Задает адрес шлюза для выхода в Интернет. Заводская настройка – 192.168.1.1

ІР-адрес может быть:

- статический;
- динамический.

Статический IP-адрес устанавливается с помощью Owen Configurator или сервисной кнопки.

Для установки статического IP-адреса с помощью Owen Configurator следует:

- 1. Зайти во вкладку Сетевые настройки.
- 2. Задать значение в поле Установить ІР адрес.
- 3. Задать значение в поле Установить маску подсети.

4. Задать значение в поле Установить ІР адрес шлюза.

При статическом IP-адресе параметр Режим DHCP должен иметь значение Выкл.

Для установки статического ІР-адреса с помощью сервисной кнопки следует:

- 1. Подключить модуль или группу модулей к сети Ethernet.
- 2. Запустить Owen Configurator на ПК, подключенному к той же сети Ethernet.
- 3. Выбрать вкладку Назначение ІР-адресов.
- 4. Задать начальный ІР-адрес для первого модуля из группы модулей.
- 5. Последовательно нажимать на модулях сервисные кнопки, контролируя результат в окне программы. В окне **Owen Configurator** будет отображаться информация о модуле, на котором была нажата кнопка, этому модулю будет присваиваться заданный статический IP-адрес и другие параметры сети. После присвоения адрес автоматически увеличивается на 1.

Для назначения статического IP-адреса с помощью кнопки параметр **Режим DHCP** должен иметь значение **Разовая установка кнопкой**.

4	Ha	стройки Ethernet	
		Текущий IP адрес	10.2.20.64
		Текущая маска подсети	255.255.0.0
		Текущий IP адрес шлюза	10.2.1.1
		Установить IP адрес	192.168.1.99
		Установить маску подсети	255.255.0.0
		Установить IP адрес шлюза	192.168.1.1
		Режим DHCP	Разовая установка 🔽
4	Настройки подключения к Owen Cloud		Выкл.
		Подключение к Owen Cloud	Вкл.
		Статус подключения к Owen Cloud	Разовая установка кнопкой

Рисунок 7.5 – Настройка параметра «Режим DHCP»

С помощью сервисной кнопки можно установить IP-адреса сразу для группы модулей (см. справку к Owen Configurator, раздел Назначение IP-адреса устройству).

Динамический IP-адрес используется для работы с облачным сервисом и не подразумевает работу с Мастером сети Modbus TCP. IP-адрес модуля устанавливается DHCP-сервером сети Ethernet.

ПРИМЕЧАНИЕ

Следует уточнить у служб системного администрирования о наличии DHCP-сервера в участке сети, к которому подключен модуль. Для использования динамического IP-адреса следует установить значение **Вкл** в параметре **Режим DHCP**.

ПРЕДУПРЕЖДЕНИЕ

Для применения новых сетевых настроек следует перезагрузить модуль. Если модуль подключен по USB, его также следует отключить.

7.5 Настройка параметров обмена по протоколу MQTT в ПО «OWEN Configurator»

Модули поддерживают протокол MQTT (версия 3.1.1) и могут использоваться в роли клиентов. Модули публикуют сообщения о состоянии своих входов и подписаны на топики, в рамках которых производится управления их выходами.

Параметры обмена по MQTT настраиваются в **Owen Configurator**.

Рисунок 7.6 – Параметры обмена по MQTT

Таблица 7.2 – Параметры обмена по протоколу MQTT

Параметр	Описание
Сообщение о присутствии	Если параметр имеет значение Вкл. , то в момент включении модуль публикует сообщение « Online » в топик MX210/Имя_устройства/ MQTTstatus . Если от модуля не поступает сообщений, брокер публикует в данный топик сообщение « Offline ».
Подключение к брокеру	Для работы с модулем по протоколу MQTT следует установить значение Вкл.
Логин Пароль	Используются для аутентификации устройства на стороне брокера. Если значения параметров не заданы, то аутентификация не используется
Имя устройства	Имя устройства. Входит в состав топика.
Адрес брокера	IP или URL брокера. Если брокер расположен во внешней сети, то следует установить для параметров Шлюз и DNS (вкладка Сетевые настройки) корректные значения
Порт	Порт брокера
Хранение последнего сообщение	Если установлено значение Включено , то другие клиенты, подписанные на топики модуля, получат последние сообщения из этих топиков
Интервал публикации	Интервал публикации данных (в секундах)
Качество обслуживания	Выбранный уровень качества обслуживания. QoS 0 — передача сообщений осуществляется без гарантии доставки. QoS 1 — передача сообщений осуществляется с гарантией доставки, но допускается дублирование сообщений (т.е. одно и тоже сообщение будет разослано подписчикам несколько раз). QoS 2 — передача сообщений осуществляется с гарантией доставки и с гарантией отсутствия дублирования сообщений.
Интервал Keep Alive (в секундах)	Если в течение промежутка времени, равного полутора значениям данного параметра, брокер не получает сообщений от модуля, то соединение будет разорвано. 0 – параметр не используется (при отсутствии сообщений соединение никогда не будет разорвано).
Статус	Статус подключения к брокеру

i

ПРИМЕЧАНИЕ

При использовании протокола MQTT запись параметров обычно является событийной, а не циклической. Рекомендуется задать параметр **Таймаут перехода в безопасное состояние** (вкладка **Modbus Slave**) равным 0.

7.6 Настройка параметров обмена по протоколу SNMP в ПО «OWEN Configurator»

Модули поддерживают протокол SNMP (версии SNMPv1 и SNMPv2c) и могут быть использованы в роли агентов. Модули поддерживают запросы GET и SET. Модули с дискретными входами отправляют трапы с битовой маской входов при изменении значения любого входа.

По протоколу SNMP доступны все параметры модуля. Список OID параметров приведен в Руководстве по эксплуатации на конкретный модуль. МIB-файл модуля доступен на его странице на сайте owen.ru.

4	SNMP		
	Включение/Отключение	Отключено	~
	Сообщество для чтения	public	
	Сообщество для записи	private	
	IP адрес для ловушки	10.2.4.78	
	Номер порта для ловушки	162	
	Версия SNMP	SNMPv1	~

Рисунок 7.7 – Параметры обмена по SNMP

Таблица 7.3 - Параметры обмена по SNMP

Параметр	Описание
Включение/Отключение	Для работы модуля по протоколу SNMP требуется установить значение Включено
Сообщество для чтения	Пароль, используемый для чтения данных модуля
Сообщество для записи	Пароль, используемый для записи данных в модуль
IP адрес для ловушки	IP-адрес, на который будет отправлен трап в случае изменения маски дискретных входов модуля (только для модулей с дискретными входами)
Номер порта для ловушки	Номер порта, на который будет отправлен трап
Версия SNMP	Версия протокола, используемая модулем (SNMPv1 или SNMPv2)

ПРИМЕЧАНИЕ

При использовании протокола SNMP без запросов чтения (**GET**) запись параметров обычно является событийной, а не циклической. Рекомендуется задать параметр **Таймаут перехода в безопасное состояние** (вкладка **Modbus Slave**) равным **0**.

Пример настройки обмена модуля по протоколу SNMP можно посмотреть в документе «Mx210. Примеры настройки обмена», который доступен на странице прибора на сайте owen.ru.

7.7 Пароль доступа к модулю

Для ограничения доступа к чтению и записи параметров конфигурации и для доступа в облачный сервис **OwenCloud** используется пароль.

Установить или изменить пароль можно с помощью ПО Owen Configurator.

В случае утери пароля следует восстановить заводские настройки.

По умолчанию пароль не задан.

7.8 Обновление встроенного ПО

Обновление встроенного ПО модуля следует выполнять с помощью интерфейса USB.

ПРИМЕЧАНИЕ

Перед обновлением ПО рекомендуется сохранить конфигурацию модуля (в меню Конфигуратора выбрать «Файл» далее «Сохранить как…»).

Для обновления встроенного ПО по интерфейсу USB следует выбрать один из способов:

- 1. С помощью Конфигуратора, используя файл прошивки с расширением *.fw;
- 2. С помощью ПО Мастер прошивки.

Обновление через Конфигуратор – рекомендовано. Второй способ подходит, если нет возможности подключить модуль к Конфигуратору. Подробная инструкция по обновлению встроенного ПО модуля находится в архиве прошивок, который доступен для скачивания на странице прибора на сайте www.owen.ru.

ПРИМЕЧАНИЕ

После обновления встроенного ПО сетевые и конфигурационные параметры сбросятся на заводские значения.

7.9 Настройка часов реального времени

Значение часов реального времени (RTC) можно установить или считать с прибора через регистры Modbus, а также с помощью ПО **Owen Configurator** (см. справку к **Owen Configurator**, раздел **Настройка часов**).

Для установки нового времени через регистры Modbus следует:

- 1. Записать значение времени в соответствующие регистры.
- 2. Установить на время не менее 1 секунды значение 1 в регистре обновления текущего времени.
- 3. Записать в регистр обновления текущего времени значение 0.

Следующую запись текущего времени можно выполнить через 1 секунду.

Если необходимо, то можно синхронизировать часы модуля с удаленным NTP сервером.

4 N	NTP		
	Включение/Отключение	Отключено	~
	Пул NTP серверов	pool.ntp.org	
	NTP сервер 1	192.168.1.1	
	NTP сервер 2	192.168.1.2	
	Период синхронизации	5	
	Статус	Отключено	

Рисунок 7.8 - Параметры NTP

Параметр	Описание
Включение/Отключение	Для включения режима синхронизации времени следует установить значение Включено
Пул NTP серверов	IP или URL используемого пула NTP-серверов
NTP сервер 1	IP основного NTP-сервера
NTP сервер 2	IP резервного NTP-сервера
Период синхронизации	Период синхронизации времени в секундах. Следует убедиться, что установленное значение не превышает минимально возможного значения для конкретного NTP-сервера
Статус	Статус подключения к серверу

ПРИМЕЧАНИЕ

Если NTP-сервер расположен во внешней сети, то следует установить корректные значения для параметров **Шлюз** и **DNS** (вкладка **Сетевые настройки**) корректные значения.

ПРИМЕЧАНИЕ

Часовой пояс прибора выбирается о вкладке Часы реального времени.

i

ПРИМЕЧАНИЕ

Если модуль подключен к облачному сервису OwenCloud как автоопределяемое устройство, то его время автоматически синхронизируется со временем облачного сервиса раз в сутки.

ПРИМЕЧАНИЕ

Все указанные NTP-сервера (в том числе сервера из пула) имеют одинаковый приоритет при опросе.

7.10 Восстановление заводских настроек

ВНИМАНИЕ

После восстановления заводских настроек все ранее установленные настройки, кроме сетевых, будут удалены.

Для восстановления заводских настроек и сброса установленного пароля следует:

- 1. Включить питание прибора.
- 2. Нажать и удерживать сервисную кнопку более 12 секунд.

После отжатия кнопки прибор перезагрузится и будет работать с настройками по умолчанию.

7.11 Принудительное обнуление счетчика

Если счетчик состояний входа переполнился, то соответствующий регистр обнуляется автоматически. Для принудительного обнуления счетчика следует записать значение 0 в регистр сброса значения счетчика.

8 Техническое обслуживание

8.1 Общие указания

Во время выполнения работ по техническому обслуживанию прибора следует соблюдать требования безопасности из раздела 3.

Техническое обслуживание прибора проводится не реже одного раза в 6 месяцев и включает следующие процедуры:

- проверка крепления прибора;
- проверка винтовых соединений;
- удаление пыли и грязи с клеммников прибора.

8.2 Батарея

В приборе используется сменная батарея типа CR2032. Батарея предназначена для питания часов реального времени.

Если заряд батареи опускается ниже 2 В, то индикатор **Авария** засвечивается на 100 мс один раз в две секунды. Такое свечение индикатора сигнализирует о необходимости замены батареи.

Если напряжение батареи часов реального времени меньше 1,6 В, то запись конфигурационных параметров выполняется во флеш-память модуля.

Порядок записи конфигурационных параметров при разряженной батарее:

- 1. Новые значения конфигурационных параметров записываются в батарейный ОЗУ около 5 секунд.
- 2. Из батарейного ОЗУ значения конфигурационных параметров переносятся во флеш-память и запускается таймаут не менее 2 минут (в зависимости от нагрузки на модуль).

ПРИМЕЧАНИЕ

Состояния батареи обновляется после подачи питания или по истечении 12 часов с момента подачи питания.

ПРЕДУПРЕЖДЕНИЕ

Не рекомендуется выполнять циклическую запись конфигурационных параметров в случае разряда батареи. Ресурс флеш памяти ограничен.

Для замены батареи следует:

- 1. Отключить питание модуля и подключенных устройств.
- 2. Для отсоединения клеммных колодок следует выполнить действия:
 - а. Поднять крышку 1.
 - b. Выкрутить два винта 3.
 - с. Снять колодку 2, как показано на рисунке 8.1.

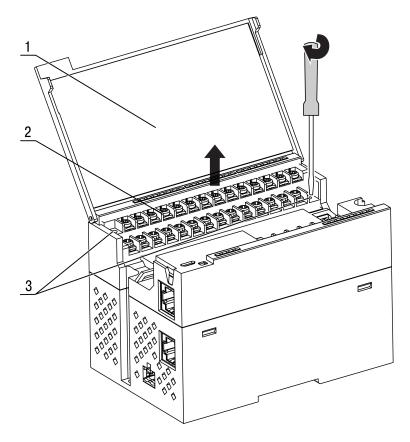


Рисунок 8.1 – Снятие первой клеммной колодки модуля

ПРЕДУПРЕЖДЕНИЕ

При выкручивании винтов крепления клеммная колодка поднимается, поэтому чтобы избежать перекоса, рекомендуется выкручивать винты поочередно по несколько оборотов за один раз.

3. Для снятия второй колодки проделать действия п 2.

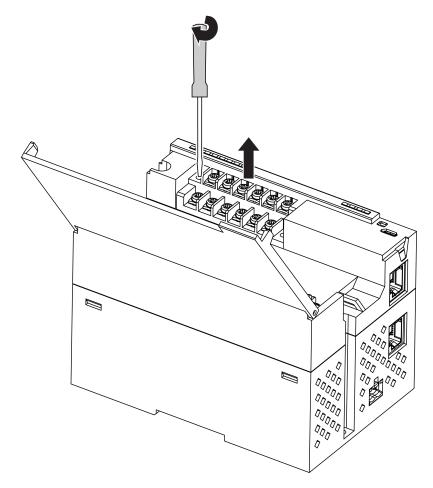


Рисунок 8.2 – Снятие второй клеммной колодки

- 4. Снять модуль с DIN-рейки.
- 5. Поочередно вывести зацепы из отверстий с одной и другой стороны корпуса и снять верхнюю крышку.



Рисунок 8.3 – Замена батареи

- 6. Заменить батарею. Рекомендуемое время замены батареи не более 1 минуты. Если батарея будет отсутствовать в приборе дольше 1 минуты, следует ввести корректное значение времени.
- 7. Собрать прибор в обратном порядке и установить на объекте.

ВНИМАНИЕ

Запрещается использовать батарею другого типа. При установке батареи следует соблюдать полярность.

После сборки и включения модуля следует убедиться в корректности показаний часов. При необходимости следует скорректировать показания часов реального времени в ПО **OWEN Configurator**.

9 Комплектность

Наименование	Количество
Модуль	1 шт.
Паспорт и Гарантийный талон	1 экз.
Руководство по эксплуатации	1 экз.
Коммутационный кабель UTP 5e 150 мм	1 шт.
Клемма питания 2EGTK-5-02P-14	1 шт.
Заглушка разъема Ethernet	1 шт.

ПРИМЕЧАНИЕИзготовитель оставляет за собой право внесения дополнений в комплектность модуля.

10 Маркировка

На корпус прибора нанесены:

- наименование прибора;
- степень защиты корпуса по ГОСТ IEC 61131-2-2012;
- напряжение питания;
- потребляемая мощность;
- класс защиты от поражения электрическим током по ГОСТ IEC 61131-2-2012;
- знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора;
- МАС-адрес.

На потребительскую тару нанесены:

- наименование прибора;
- знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора;
- дата изготовления прибора.

11 Упаковка

Упаковка прибора производится в соответствии с ГОСТ 23088-80 в потребительскую тару, выполненную из коробочного картона по ГОСТ 7933-89.

Упаковка прибора при пересылке почтой производится по ГОСТ 9181-74.

12 Транспортирование и хранение

Прибор должен транспортироваться в закрытом транспорте любого вида. В транспортных средствах тара должна крепиться согласно правилам, действующим на соответствующих видах транспорта.

Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус 25 до плюс 55 °C с соблюдением мер защиты от ударов и вибраций.

Прибор следует перевозить в транспортной таре поштучно или в контейнерах.

Хранить приборы следует на стеллажах в индивидуальной упаковке или транспортной таре в закрытых отапливаемых помещениях при температуре воздуха от плюс 5 до плюс 40° С и относительной влажности воздуха не более 80%. В воздухе помещений должны отсутствовать кислотные, щелочные и другие агрессивные примеси.

Прибор следует хранить на стеллажах.

Приложение А. Расчет вектора инициализации для шифрования файла архива

Для расшифровки файла архива в качестве вектора инициализации следует использовать хешфункцию. Хешфункция должна возвращать 8 байт (тип long long).

Пример реализации хеш-функции на языке программирования С:

```
typedef union {
       struct {
               unsigned long lo;
               unsigned long hi;
        };
        long long hilo;
}LONG LONG;
long long Hash8(const char *str) { // На основе Rot13
       LONG_LONG temp;
        temp.lo = 0;
        temp.hi = 0;
        for ( ; *str; )
        {
                temp.lo += (unsigned char) (*str);
                temp.lo -= (temp.lo << 13) | (temp.lo >> 19);
                str++;
                if (!str) break;
                temp.hi += (unsigned char) (*str);
                temp.hi -= (temp.hi << 13) | (temp.hi >> 19);
                str++;
        return temp.hilo;
}
```


Россия, 111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5

тел.: +7 (495) 641-11-56, факс: (495) 728-41-45

тех. поддержка 24/7: 8-800-775-63-83, support@owen.ru

отдел продаж: sales@owen.ru

www.owen.ru

рег.:1-RU-53119-2.11